106 lines
3.1 KiB
C++
106 lines
3.1 KiB
C++
#pragma once
|
|
|
|
#include <math.h>
|
|
|
|
typedef float choice_t;
|
|
|
|
#define do_op(o, r, i) \
|
|
inline void operator o##= (const r & rhs) { for(unsigned n=0; n<(i); n++) c[n] o##= rhs.c[n]; } \
|
|
inline void operator o##= (choice_t d) { for(unsigned n=0; n<(i); n++) c[n] o##= d; } \
|
|
inline r operator o (const r & rhs) const { r tmp(*this); tmp o##= rhs; return tmp; } \
|
|
inline r operator o (choice_t d) const { r tmp(*this); tmp o##= d; return tmp; }
|
|
|
|
#define do_ops(c, i) \
|
|
do_op(*, c, i); \
|
|
do_op(/, c, i); \
|
|
do_op(+, c, i); \
|
|
do_op(-, c, i);
|
|
|
|
|
|
struct v3 {
|
|
union {
|
|
choice_t c[4];
|
|
struct {
|
|
choice_t x, y, z, w;
|
|
};
|
|
};
|
|
|
|
v3(choice_t x, choice_t y, choice_t z) : c{x,y,z} {}
|
|
v3(choice_t f) : v3(f,f,f) {}
|
|
v3() : v3(0,0,0) {}
|
|
|
|
do_ops(v3, 3);
|
|
|
|
inline v3 operator-(void) const { return {-x, -y, -z}; }
|
|
|
|
inline choice_t operator^(const v3& rhs) const
|
|
{ return x * rhs.x + y * rhs.y + z * rhs.z; }
|
|
|
|
/* Return normalised (unit) vector. */
|
|
inline v3 norm() const
|
|
{ return *this / len(); }
|
|
|
|
inline choice_t len() const
|
|
{ return sqrtf(x*x + y*y + z*z); }
|
|
|
|
inline choice_t lensquared() const
|
|
{ return x*x + y*y + z*z; }
|
|
|
|
/* Return vector reflected around `n'. Expects `this' and `n' to be unit. */
|
|
inline v3 ref(const v3& n) const
|
|
{ return n * ((*this ^ n) * 2) - *this;}
|
|
|
|
/* Cross product. */
|
|
inline v3 cross(const v3& b) const
|
|
{ return { y*b.z - z*b.y,
|
|
x*b.z - z*b.x,
|
|
x*b.y - y*b.x }; }
|
|
|
|
inline v3 refract(const v3& n, choice_t ior_ratio) const
|
|
{
|
|
return n * sqrtf(1 - powf(ior_ratio, 2) * (1 - powf(*this ^ n, 2))) + (*this - n * (*this ^ n)) * ior_ratio;
|
|
}
|
|
|
|
inline v3 refract(const v3& n, choice_t ior_incident, choice_t ior_refract) const
|
|
{ return refract(n, ior_incident / ior_refract); }
|
|
|
|
inline v3 clamp(const v3& from, const v3& to) const
|
|
{ return { fmin(fmax(x, from.x), to.x),
|
|
fmin(fmax(y, from.y), to.y),
|
|
fmin(fmax(z, from.z), to.z) }; }
|
|
|
|
inline v3 exp() const
|
|
{ return { ::exp(x), ::exp(y), ::exp(z) }; }
|
|
|
|
inline v3 htan(choice_t exposure = 0) const
|
|
{
|
|
return { powf((tanh(x + exposure) + 1) / 2, 2.2), powf((tanh(y + exposure) + 1) / 2, 2.2), powf((tanh(z + exposure) + 1) / 2, 2.2) };
|
|
return { tanh(x + exposure), tanh(y + exposure), tanh(z + exposure) };
|
|
}
|
|
};
|
|
|
|
#undef do_ops
|
|
#undef do_op
|
|
|
|
#define V3_FMT "v3(%.2f, %.2f, %.2f)"
|
|
#define V3_ARG(v) (v).x, (v).y, (v).z
|
|
|
|
struct Matrix
|
|
{
|
|
v3 m[4];
|
|
void init_rotate(const v3& angle)
|
|
{
|
|
choice_t Cx = cos(angle.c[0]), Cy = cos(angle.c[1]), Cz = cos(angle.c[2]);
|
|
choice_t Sx = sin(angle.c[0]), Sy = sin(angle.c[1]), Sz = sin(angle.c[2]);
|
|
choice_t sxsz = Sx*Sz, cxsz = Cx*Sz;
|
|
choice_t cxcz = Cx*Cz, sxcz = Sx*Cz;
|
|
Matrix result = {{ { Cy*Cz, Cy*Sz, -Sy },
|
|
{ sxcz*Sy - cxsz, sxsz*Sy + cxcz, Sx*Cy },
|
|
{ cxcz*Sy + sxsz, cxsz*Sy - sxcz, Cx*Cy } }};
|
|
*this = result;
|
|
}
|
|
|
|
v3 transform(const v3& vec) const
|
|
{ return { m[0] ^ vec, m[1] ^ vec, m[2] ^ vec }; }
|
|
};
|